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Estimation of ()-Factors and Resonant Frequencies

Kevin J. Coakley, Jolene D. Splett, Michael D. Janezic, Senior Member, |EEE, and Raian F. Kaiser

Abstract—We estimate the quality factor @ and resonant
frequency fo of a microwave cavity based on observationsof ares-
onance curve on an equally spaced frequency grid. The observed
resonance curveisthe squared magnitude of an observed complex
scattering parameter. We characterize the variance of the additive
noise in the observed resonance curve parametrically. Based on
this noise characterization, we estimate @ and f, and other
associated model parameters using the method of weighted least
squares (WLS). Based on asymptotic statistical theory, we also
estimate the one-sigma uncertainty of @ and f,. In a simulation
study, the WL'S method outperforms the 3-dB method and the
Estin method. For the case of measured resonances, we show that
the WL S method yieldsthe most precise estimatesfor theresonant
frequency and quality factor, especially for resonances that are
undercoupled. Given that the resonance curve is sampled at a
fixed number of equally spaced frequencies in the neighborhood
of the resonant frequency, we determine the optimal frequency
spacing in order to minimize the asymptotic standard deviation
of the estimate of either @ or fo.

Index Terms—Cylindrical cavity, experimental design,
microwave, noise characterization, optimal frequency spacing,
quality factor, resonance curve, resonant frequency.

I. INTRODUCTION

N THIS study, we characterize the frequency-dependent ad-

ditive noise in measured microwave cavity resonance curves
and estimate the quality factor ¢ and resonant frequency fo of
the microwave cavity. The dataused are the squared magnitudes
of the observed values of frequency-dependent complex scat-
tering parameters | Sy |2.

The resonance curve parameters Q and fy can be estimated
from the observed values of |S;|? using either the 3-dB or the
Estin method [1]. The Estin method is an example of a reso-
nance curve area (RCA) method [2]. In these approaches, the
estimated resonant frequency is the frequency at which the res-
onance curve reaches its maximum value. Hence, the estimated
resonant frequency is constrained to take discrete values. Fur-
ther, neither the 3-dB nor the Estin method exploits knowledge
about frequency-dependent additive noisein the data. In related
work, Petersan and Anlage [3] demonstrated that the method
of least squares (LS) provides superior estimates of @ and fo
when compared to the 3-dB method and to the related RCA
method for a similar resonance curve problem. However, for
cases where the variance of the additive noise varies with fre-
guency, the method of L Sis suboptimal. Further, the L S method
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Fig. 1. Resonant cavity equivalent circuit model.

does not provide an estimate of the covariance of the estimated
model parameters.

Here, we present a new method to estimate ¢ and f; that
accounts for frequency-dependent additive noise. We charac-
terize the frequency-dependent noise in the measured resonance
curve in terms of a parametric model with two parameters. In
the statistical literature, such an approach is known as vari-
ance function estimation [4]. In our model, one parameter
corresponds to a noise floor, while the other parameter rep-
resents the frequency-dependent part of the noise. Based on
the estimated variance function parameters, we estimate the
resonance curve parameters (including @ and fy) using the
weighted least squares (WLS) method. Due to the sensitive
nature of this optimization problem, we take special care to
ensure that we find (or very nearly find) the global minimum of
the objective function that we seek to minimize. In particular,
instead of starting our optimization algorithm from just one
set of initial guesses for the model parameters, we perform the
optimization algorithm for each of many randomly selected
initial guesses.

Based on the estimated variance function parametersand esti-
mated resonance curve model parameters, we estimate the one-
sigma random errors of @ and f, using asymptotic statistical
theory. In our experiments, the resonance curve is sampled at
201 equally spaced frequencies in the neighborhood of the res-
onant frequency. We compute the asymptotic standard deviation
of the Q and f, estimates as afunction of the frequency spacing
df, the model parameters that characterize the resonance curve,
and the additive noise. For optimal estimation of (2, using our
experimental data, A = Q(fax/fo — 1) = 2.6, where fi.x IS
the largest frequency. For optimal estimation of f,, A = 0.6.

Il. RESONANCE CURVE MODEL

We model a two-port cylindrical cavity with the equivalent
circuit shown in Fig. 1 [5], [6]. In particular, we are interested
in measuring an undercoupled cavity, with a high quality factor,
operating near resonance. In this case, we assume that the resis-
tances and self-inductances of the coupling loops are negligible
[5]. We employ two ideal transformers to model the coupling
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loops that excite the cylindrical cavity. We use a seriesinductor
(L), capacitor (C), and resistor (R) to model the cylindrical
cavity. An impedance-matched source is connected to port one
of the cavity while an impedance-matched load is connected
to port two. Note that the source and load can be interchanged
without loss of generality.

We define T'(f) as the transmission loss through the cylin-
drical cavity

_Pin
Py

() D
where f isthe frequency, P, isthe maximum power delivered
to amatched |oad connected at port one, and Py, isthe maximum
power delivered to the load at port two [5]. Solving for P,, and
P, wefind

. Ve
Rn:-ll-[lZO - 4—Z0 (2)
and
P, =1L157
V2 5 B
_ Z_S P12 i 3
(14 P+ )2+ Q3 (f_J; - %)
where
2
Z
pr= 0 )
and
2
VA
fr = 220 (®)
In (3), the resonant frequency fy is defined as
1
2 __
fo= 472 LC ©)
and the unloaded quality factor @, is
27 folL
Q=200 U
Substituting (2) and (3) into (1) we obtain
4513
T(f) = Al . ®
(1481 +52)2 + QF (f_); - %)
At resonance (f = fo), the transmission loss reduces to
453
T = 9
(o) (14 1+ (2)? ©
Taking the ratio of T'(fo)/T(f) we obtain
2
2 ( f fo
T(fo) _ @0 (f_o B 7) . (10)
() (1+ By + f2)?

Note that, in practice, the unloaded quality factor Q is larger
than the measured quality factor 2 dueto the effects of the cou-
pling loops

Qo = Q1+ p1 + Po). (11)
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However, if we reduce the coupling level so that the cylindrical
cavity is very undercoupled (51 <« 1 and 82 <« 1), we can
neglect the coupling factors 3; and 3, and rewrite (10) as

T T
= TR T
2 0 0
1+Q (f_o_T) 1+Q0(%—T)
with the assumption that the measured quality factor @ is ap-
proximately Q. (If coupling cannot be ignored, see [7] for
methods of calculating 3; and 35.)

Atthe kth frequency, we model the measured resonance curve
as

(12)

T(fo)
1+ (- 1)

where T,,,( fi.) = |So1(fx)]? represents the observed measure-
ment, 7'( f;,) denotesthetruevalueor “ noise-free” measurement,
BGisanoisefloor, and ¢( f},) is additive noise with an expected
value of zero and variance o, . The model parameters form
a four-vector, = (61,05, 03,0,) = (T(fo), Q, fo,BG). For
the observed data, we model the variance of the additive noise
as

Vi
2 (e _ fo
1+@ (fo fk)
where v; and ~, correspond to the frequency-dependent noise
and the noise floor, respectively. In Appendix C, we prove that
our variance function model (14) is exact for the case where the
additive noise in the measurement of thereal part of S»; andthe
additive noise in the measurement of the imaginary part of So;
are statistically independent realizations of the same Gaussian

process. In our proof, we assume that the expected val ues of the
additive noise realizations are zero.

s+ (14

VAR[e(fi)] = 025,y =

A. Parameter Estimation

Suppose we measure the resonance curve at M distinct fre-
quencies and estimate the model parameters by minimizing a
weighted sum of M sguared residuals

L= w[Tu(fr) - T ()] (15)

If the weights w;, aredll equal, minimization of L yieldsthe LS
estimate of 4. If the kth weight is set to the reciprocal of the
(estimated) variance of T,,,(fx), i.e, wy = 1/VAR_[T,,,,(fk)],
then minimization of L yieldsthe WLS estimate of 6.

We assume that additive noise realizations are statistically in-
dependent. Given the parameters which characterize the reso-
nance curve f and the variance of the additive noise, asymptotic
theory [8] predicts the covariance of the parameter estimates.
From one curve, the predicted covarianceis

~
. =

Ccov(h) = (BTv—ip)! (16)
where the elements of the diagonal matrix V' are
Vi = VAR [T, (fx)] 7
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and

Buj = 8<Tm(fk)>'

50 (18)

Thus, the predicted asymptotic variance of the mth parameter
estimated from a resonance curve is
oy =BTV 1B), L

mm”

(19)

Alternatively, the asymptotic standard error (ASE) of the esti-
mate of 8, is

O';m == (I )rnrn (20)
where
M 1 8<Trn(fk)> 8<Tnl(fk)>
hi = ; VAR[L(fi)]  09; oo, &

The ASE can be thought of as an approximation for the stan-
dard deviation of the parameter. As the signal-to-noise ratio
(SNR) of the data increases, the accuracy of this approximation
improvesin general. For more discussion of asymptotic proper-
ties of estimates of nonlinear WLS, see [8].

B. Computational Details

The algorithm for estimation of ¢ and f; has four steps.
Step1) Compute () using the Estin method [1]. (See
Appendix A.)

Use Q from the Estin method as a starting value
in the nonlinear fitting algorithm that computes un-
weighted L S estimates of the model parameters. The
background parameter BG is constrained to be pos-
itive by expressing it as the squared value of the ap-
propriate parameter in the model.

Estimate the variance function and weights based
on the “binned” squared residuals by the method of
LS. Frequency binswere determined by dividing the
entirefreguency range of the resonance curveinto 40
equal sections. The variance estimates were adjusted
upward by a degree of freedom factor of 201/197.

Although the varianceis modeled using v7 and v3
to ensure a positive variance estimate, the optimiza-
tion code searchesfor asolutionin the unconstrained
71 and 2 space. We report |71 | and |42|.

A typical variance function is shown in Fig. 2(c).

The vertical axis displays the fractional residuals,
which are absolute residuals divided by 8, and the
horizontal dashed line near the bottom of the plot
represents the fractional background level, 42/6;.
Fig. 2(d) displays the same data when residuals are
assigned to frequency binsand the averagefractional
residual is computed for each bin.
Use the unweighted LS parameter estimates as
starting valuesin the nonlinear fitting algorithm that
computes weighted LS parameter estimates. The
weights used in the nonlinear fit are derived from
the variance function estimated in step 3.

Step 2)
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Fig.2. (a) Anobserved and predicted (from WL Sfit) resonance curve. (b) Raw

residuals. (c) Fractiona residuals (absolute residuals divided by 6+ ). (d) Binned
fractional rms residuals versus frequency. In (&) and (d), model predictions are
shown as solid lines.

The nonlinear fitting routine used to determine the LS and
WLS parameter estimates minimizes a general, unconstrained
objective function using the analytic gradient and Hessian of
the objective function [9].

The objective function was minimized for each of 250 ran-
domly generated initial parameter values. The final parameter
estimates are those that yield the smallest value of the objective
function. If only one set of initial parameter valuesis used, the
objective function may convergeto alocal minimum rather than
the global minimum.

The same nonlinear fitting routine used to compute LS and
WLS parameter estimates was also used to estimate the vari-
ance function parameters. Again, we experienced convergence
problems, so random initial parameter values were used.

I1l. EXPERIMENTAL STUDY

In our study, we employed a cylindrical cavity resonator,
shown in Fig. 3. The cavity was nominally 450 mm long
and 60 mm in diameter, and it was composed of a helically
wound cylindrical waveguide terminated by two endplates.
Both of the gold-plated endplates were optically polished. One
endplate was fixed on the top of the cylindrical cavity, while
the bottom endplate, with a slightly smaller diameter than that
of the cylindrical waveguide, traveled over a range of 25 mm
through the use of a motorized micrometer drive. Movement of
the bottom endplate allowed for tuning of the cavity resonant

frequency.
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Fig. 3. Cylindrica cavity in the “sample loaded” state.

Asin [10] and [11], use of a helica waveguide attenuated
many of the undesired resonant modeswhileallowingthe TEy,,
cavity modes to propagate. Our particular helical waveguide
consisted of two copper wires embedded in epoxy surrounded
by a fiberglass cylinder. Although the helical waveguide low-
ered the quality factor of the cavity dightly, it also eliminated
many of the unwanted resonant modes. Thus, the advantages of
using the helical waveguide outwei ghed its associated disadvan-
tages.

Near the top of the cylindrical waveguide section were two
coupling loops, extending from two coupling holes located on
opposite sides of the cylindrical waveguide. In order to excite
a resonance in the cylindrical cavity, each coupling loop was
connected to an automatic network analyzer viaacoaxial trans-
mission line. Cavity coupling was altered by changing the extent
that the coupling loops protruded into the cavity. In particular,
we kept the resonant peak amplitude below —50 dB so that the
losses due to the coupling loops were negligible.

We operated the cylindrical cavity in two states, “air” and
“sample loaded.” The “air” state refers to the cavity without a
sample present, while the “sample loaded” state refers to the
cavity with a dielectric sample on the bottom endplate. We ad-
justed the cylindrical cavity length to obtain a resonant fre-
quency near 10 GHz for each cavity state. For each cavity state,
30 resonance curves were collected at two different frequency
spacings df . Each resonance curve was made up of 201 equally
spaced points, and we performed 512 averages on each reso-
nance curve to reduce the level of noise. For each curve, we
estimated ) and f, by various methods. Fig. 4 displays the
estimates of @ and f, for each of the 30 experimental curves
corresponding to the “sample loaded” state. The binned frac-
tional root-mean-square (rms) residuals and the estimated vari-
ance functions are shown in Fig. 5 for the 30 “sample loaded”
resonance Curves.

Tables| and |1 display mean estimates of @ and f, and their
associated standard deviations (shown in parentheses) for the
various methods. For each curve, we estimated the ASE based
on the parameter estimates and (20). The WLS method yields
estimates with the lowest variahility.

For 30 realized data sets, a 95% two-sided confidenceinterval
for o is (0.79645,1.34435). Thus, the sampling error is not
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of 30 experimental curves corresponding to the “sample loaded” state where
A = 2.4396.
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TABLE |
STATISTICAL PROPERTIES OF ) ESTIMATES COMPUTED FROM REAL DATA
INCLUDING: THE MEAN OF (2, STANDARD ERROR OF THE MEAN (SHOWN
IN PARENTHESES), AND THE STANDARD ERROR OF (. FOR THE WLS
METHOD, WE LIST THE MEAN ESTIMATE OF %, THE ASE OF () (20),
AND ITS ASSOCIATED STANDARD ERROR

Cavity
State df (Hz) Estin 3-dB LS WLS &5
air 3400 | 74335(45) 75051(140) 74119(61) 74081(44)
246 766 334 241 238(3)
1000 | 75150(90) 75406(117) 74143(63) 74153(55)
491 643 347 304 528(5)
sample | 5400 | 46143(49) 46659(150) 45885(40) 45888(29)
loaded 270 823 218 161 206(3)
1500 | 47225(70) 47303(110) 46029(53) 46020(48)
381 605 292 263 483(5)
TABLE I

STATISTICAL PROPERTIES OF fy ESTIMATES COMPUTED FROM REAL DATA
INCLUDING: THE MEAN OF fo — frot (fror = 10 GHz), STANDARD ERROR OF
THE MEAN (SHOWN IN PARENTHESES), AND THE STANDARD ERROR OF fo.FOR

THE WLS METHOD, WE LIST THE MEAN ESTIMATE OF a;‘o , THE ASE OF fo
(20), AND ITS ASSOCIATED STANDARD ERROR

Cavity Estin, 3-dB LS WLS
State | df (H2) | fo— fror (M) fo— fres M2) fo— frop (1) &%
air 3400 2365(651) 1424(81) 1458(79)
3565 444 435 125(2)
1000 -2381(653) -3249(119) -3245(119)
3578 654 650 79(0.8)
sample | 5400 8696(1239) 11534(94) 11845(98)
loaded 6785 517 537 280(5)
1500 8530(960) 9710(45) 9751(44)
5258 249 239 182(2)

large enough to explain the discrepancy between the empirical
standard deviation of the () estimates and the estimated ASE at
df = 1000 Hz and 1500 Hz. X

The asymptotic standard error of f; is much smaller than the
estimated standard deviation of f, computed from the 30 reso-
nance curves. We attribute this discrepancy to systematic drift
of the resonant frequency during the experiment. The variability
of the Estin/3-dB estimate is much larger than the variability of
the LS and WLS estimates.

IV. THEORETICAL STUDIES
A. Optimal Frequency Spacing

Based on 6 and ~, we compute asymptotic standard errors
ag and a}o using (14)—(21). In our first study, we equate the
resonance frequency to the model parameters of the corre-
sponding mean values computed from the observed resonance
curves (Table I11). In al cases, the resonance curve is sampled
at 201 equally spaced frequencies. We define

fmax - fO
A=Q————
T
where fuax = fo + 100df. In Fig. 6, we show the fractional
asymptotic standard error (ASE) of the estimates of @ and fj
as afunction of df. The optimal values of df for estimation of
Q and f, arelisted in Table IV.

(22)

TABLE Il
PARAMETER VALUES USED IN THE SIMULATION fror = 10 GHz

“sample loaded” “air”

Parameter df = 5400 Hz  df = 3400 Hz
6 x 10° 4464 8943
62 45888 74081
b3 — fres (Hz) 11845 1458
04 x 10° 0.20 0.28
1 % 10° 6.37 8.80
Yo x 10° 0.95 121

5.000

Sample Loaded
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<

ASE(Q)/Q
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Fig. 6. Fractional asymptotic standard errors of: (a) Q and (b) fo where
model parameters are equated to estimated values from real data. Values of
Q are 74081.32 and 45888.34 for “air” and “sample loaded” cavity states,
respectively.

5*107-9

_TABLE IV
THEORETICAL ASES (20) OF ¢ AND f; BASED ON DATA SIMULATED USING
TABLE Il PARAMETER VALUES

Parameter | Cavity Theoretical
Estimate State | df (Hz) A ASE
Q air 1000 0.7482 516.181
3400  2.5262  240.030
3500*  2.6003 239.940
sample 1500  0.6929 501.346
loaded 5400  2.4826  208.045
5700* 2.5743 207.924
fo air 1000 0.7482 78.2 Hz
3400  2.5262 126 Hz
820¢  0.6001 76.5 Hz
sample 1500  0.6929 173.6 Hz
loaded | 5400  2.4826 281.1 Hz
1400 0.6011 171.7 Hz

¢ optimal
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TABLE V
STATISTICAL PROPERTIES OF ESTIMATES OF (¢ COMPUTED FROM SIMULATION
DATA INCLUDING: BIAS OF THE ESTIMATE, STANDARD ERROR OF THE
BIAS (SHOWN IN PARENTHESES), AND THE STANDARD ERROR OF THE

ESTIMATE. THE MEAN OF THE ESTIMATED VALUE OF ASE, ATS\E,
IS SHOWN FOR THE WL S METHOD

Q Spacing (Hz) | 3-dB Estin WLS ASE ASE
74081 1000 1381(22) 1175(15) 176(10)
(A =0.7408) | 701 475 332 523 517
3400 706(25)  183(10)  32(D)
(A=25188) | 804 339 209 234 235
6800 279(26)  -215(18)  12(8)
(A =50375 | 831 562 253 250 259
45888 1500 1385(18) 1169(13) 173(10)
(A=06883) | 581 421 314 505 499
5400 672(21)  2209)  28(6)
(A =24780) | 652 286 179 202 203
10800 34422 #2(16) 120D
(A =49559) | 693 508 218 215 223
TABLE VI

STATISTICAL PROPERTIES OF f; ESTIMATES COMPUTED FROM SIMULATION
DATA INCLUDING: BIAS OF THE ESTIMATE, STANDARD ERROR OF THE
BIAS (SHOWN IN PARENTHESES), AND THE STANDARD ERROR OF THE

ESTIMATE. THE MEAN OF THE ESTIMATED VALUE OF ASE, ASE,
IS SHOWN FOR THE WL S METHOD

Q l Spacing (Hz) | 3-dB/Estin (Hz) WLS (Hz) ASE (Hz) ASE (Hz)
74081 1000 -156(104) 2(2)
(A = 0.7408) 3300 75 78 77
3400 -17(12) 5(4)
(A =2.5188) 3808 124 122 124
6800 7(1324) 4(6)
(A =5.0375) 4188 178 166 175
45888 1500 -368(193) 3(5)
(A = 0.6883) 6114 166 173 171
5400 54(223) 11(9)
(A =2.4780) 7044 275 271 276
10800 130(242) 10(13)
(A =4.9559) 7655 395 371 389

B. Monte Carlo Sudy

We simulate data similar to observed data for both cavity
states. In Tables V and VI, we compare the performance of the
various methods for estimating 2 and f,. In Table VII, we list
the statistical properties of our variance function parameter esti-
mates. For the lowest frequency spacing, the standard errors of
the @ estimates are lower than what is predicted by asymptotic
theory. For the other frequency spacings, the asymptotic theory
predicts the standard error of the @ estimate well. For al fre-
guencies, the standard error of the f, estimateiswell predicted
by asymptotic theory.

V. SUMMARY

The frequency-dependent additive noise in measured mi-
crowave cavity resonance was characterized. The observed data
were the squared magnitude of afrequency-dependent complex
scattering parameter |S»;|%. Based on a parametric model for
the additive noise of the observed resonance curve, @ and f,
and other associated model parameters were estimated using
the method of WLS. Asymptotic statistical theory was used to
estimate the one-sigma uncertainty of Q and f,. We found that
the WL S method outperformed the 3-dB method and the Estin

867

TABLE VII
TRUE VARIANCE FUNCTION PARAMETERS IN SIMULATION STUDY AND
MEAN VALUES OF ESTIMATED VARIANCE FUNCTION PARAMETERS.
STANDARD ERRORS ARE SHOWN IN PARENTHESES

Q 7 x10% 49 x 10°  df (Hz) 7 x 10° 4y x 10°
74081 87797 1.2058 1000 8.15(4)  2.19(5)
3400  8.34(3)  1.43(2)

6800  8.12(5)  1.34(2)

45888  6.3741 094678 1500  5.88(3)  1.68(4)
5400  6.06(3)  1.08(2)

10800  5.91(3)  1.03(1)

method (an example of the RCA method). For rea data, the
WLS method yielded the most precise estimates. An advantage
to using the WL S method isthat @ and f, estimates have less
variability than the other methods even for “noisy” resonance
curves. (“Noisy” data can occur due to inadequate signal aver-
aging and/or low coupling.) For one observed resonance curve,
the 3-dB method does not provide an associated uncertainty for
@ and f, whereas the WL S method does.

Given that the resonance curve was sampled at afixed number
of equally spaced frequencies in the neighborhood of the reso-
nant frequency, we determined the optimal frequency spacingin
order to minimize the asymptotic standard deviation of the es-
timate of either @ or f,. For optimal estimation of (2, with our
experimental data, A = Q(fimax/fo — 1) = 2.6, where fyax
isthe largest frequency. For optimal estimation of fy, A == 0.6.
The fractional uncertainty of f, is smaller than the fractional
uncertainty of €2 when mode interference is neglected.

APPENDIX A
ESsTIN METHOD

If additive noise and background are neglected, the resonance
curve model can be written as

()
1h Q2 (- £

A good approximation for high @ valuesis

Tl fr) =

fi — fo) o | Tlf) |2
2Q < fO o Trn(f)

At the kth frequency, define

2 = 2= o)

fo
and
_ Trn(fO) /2

I = Trn(fk)

Define

U = 1T + qo.
The values of «; and «, that minimize

> luw — Gl

arecalled &; and &o. The Estin estimator of Q is @y [1].
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APPENDIX B
THE 3-dB METHOD

Define
T(fo)

T(fo+Af)
Define Aft to be the positive value of Af such that
rap(AfT) = 3, and Af~ to be the negative value of Af such
that »qs(A f~) = 3. According to the 3-dB method, we have

- fo

Q=

[Aft—Af]

rap(Af) = 10logy,

If there is no measurement at the frequencies corresponding to
rap(AfT) =3 0orrgp(Af7) = 3, Aft or Af~ isestimated
by alinear interpolation method.

APPENDIX C
V ARIANCE FUNCTION DERIVATION: SPECIAL CASE

The quantity 7'( /) isthe sum of the squared real and imagi-
nary components of the complex scattering parameter Sa1 (fx).
The measured resonance curve can be expressed as

T fr) = [9(f1) + eg ] + [RUf) + en, ]

where g(fi.) = R[S21(fx)] and 2(fx) = S[S21(fx)]. The mea-
sured real and imaginary components of 7,,,( f;.) are assumed
to be statistically independent realizations of the same Gaussian
process that has an expected value of 0 and variance 2. Thus,
at the 4th frequency, the expected value of 7,,,( f3) is

(23)

BT (fi)] = QQ(fk) + hQ(fk) + 207 (24)
and the variance of 7,,,(f%) is
VAR[T, (fu)] = 40%[*(fu) + K2 (fi)] +80%.  (29)
Since T(fr) = g(f)? + h(fx)?, then
E[Tu(fu)] = T(fr) + 20 (26)
and
VAR[T,(fi)] = 40°T(f) + 80, (27)

For this special case, (26) and (27) are consistent with (13) and
(14) as

E[T,(fi)] = T(fx) +BG (28)
and
VAR[Z (fi,)] = L P
14+Q2 (4 - 4)
where

BG = 25°
v; = 40°T(fo)

and
75 = 8ot
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